186 research outputs found

    Electrical properties of InAs1-xSbx and InSb nanowires grown by molecular beam epitaxy

    Get PDF
    Results of electrical characterization of Au nucleated InAs1-xSbx nanowires grown by molecular beam epitaxy are reported. An almost doubling of the extracted field effect mobility compared to reference InAs nanowires is observed for a Sb content of x = 0.13. Pure InSb nanowires on the other hand show considerably lower, and strongly diameter dependent, mobility values. Finally, InAs of wurtzite crystal phase overgrown with an InAs1-xSbx shell is found to have a substantial positive shift in threshold voltage compared to reference nanowires. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726037

    Thermoelectric power factor limit of a 1D nanowire

    Full text link
    In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effect in practice. Here we point out that there is an upper limit to the thermoelectric power factor of non-ballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasi-ballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I-V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit predicts that a competitive power factor, on the order of mW/m-K^2, can be achieved by a single 1D electronic channel in state-of-the-art semiconductor nanowires with small cross-section and high crystal quality

    Electron-hole interactions in coupled InAs-GaSb quantum dots based on nanowire crystal phase templates

    Full text link
    We report growth and characterization of a coupled quantum dot structure that utilizes nanowire templates for selective epitaxy of radial heterostructures. The starting point is a zinc blende InAs nanowire with thin segments of wurtzite structure. These segments have dual roles: they act as tunnel barriers for electron transport in the InAs core, and they also locally suppress growth of a GaSb shell, resulting in coaxial InAs-GaSb quantum dots with integrated electrical probes. The parallel quantum dot structure hosts spatially separated electrons and holes that interact due to the type-II broken gap of InAs-GaSb heterojunctions. The Coulomb blockade in the electron and hole transport is studied, and periodic interactions of electrons and holes are observed and can be reproduced by modeling. Distorted Coulomb diamonds indicate voltage-induced ground-state transitions, possibly a result of changes in the spatial distribution of holes in the thin GaSb shell.Comment: 8 pages, 7 figure

    Single-electron transport in InAs nanowire quantum dots formed by crystal phase engineering

    Full text link
    We report electrical characterization of quantum dots formed by introducing pairs of thin wurtzite (WZ) segments in zinc blende (ZB) InAs nanowires. Regular Coulomb oscillations are observed over a wide gate voltage span, indicating that WZ segments create significant barriers for electron transport. We find a direct correlation of transport properties with quantum dot length and corresponding growth time of the enclosed ZB segment. The correlation is made possible by using a method to extract lengths of nanowire crystal phase segments directly from scanning electron microscopy images, and with support from transmission electron microscope images of typical nanowires. From experiments on controlled filling of nearly empty dots with electrons, up to the point where Coulomb oscillations can no longer be resolved, we estimate a lower bound for the ZB-WZ conduction-band offset of 95 meV.Comment: 9 pages 9 figure

    Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy

    No full text
    Results of electrical characterization of Au nucleated InAs₁ˍₓSbₓnanowiresgrown by molecular beam epitaxy are reported. An almost doubling of the extracted field effect mobility compared to reference InAsnanowires is observed for a Sb content of x = 0.13. Pure InSbnanowires on the other hand show considerably lower, and strongly diameter dependent, mobility values. Finally, InAs of wurtzite crystal phase overgrown with an InAs₁ˍₓSbₓ shell is found to have a substantial positive shift in threshold voltage compared to reference nanowires.This work received financial support from the Nanometer Structure Consortium at Lund University (nmC@LU), the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation (KAW). It also received financial support from the French National Research Agency (ANR), TERADOT project, under Contract No.ANR-11-JS04-002-01

    Unipolar and bipolar operation of InAs/InSb nanowire heterostructure field-effect transistors

    Get PDF
    We present temperature dependent electrical measurements on n-type InAs/InSb nanowireheterostructurefield-effect transistors. The barrier height of the heterostructure junction is determined to be 220 meV, indicating a broken bandgap alignment. A clear asymmetry is observed when applying a bias to either the InAs or the InSb side of the junction. Impact ionization and band-to-band tunneling is more pronounced when the large voltage drop occurs in the narrow bandgapInSb segment. For small negative gate-voltages, the InSb segment can be tuned toward p-type conduction, which induces a strong band-to-band tunneling across the heterostructucture junction.This work was carried out within the Nanometer Structure Consortium at Lund University and was supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation

    Spectroscopy and level detuning of few-electron spin states in parallel InAs quantum dots

    Full text link
    We use tunneling spectroscopy to study the evolution of few-electron spin states in parallel InAs nanowire double quantum dots (QDs) as a function of level detuning and applied magnetic field. Compared to the much more studied serial configuration, parallel coupling of the QDs to source and drain greatly expands the probing range of excited state transport. Owing to a strong confinement, we can here isolate transport involving only the very first interacting single QD orbital pair. For the (2,0)-(1,1) charge transition, with relevance for spin-based qubits, we investigate the excited (1,1) triplet, and hybridization of the (2,0) and (1,1) singlets. An applied magnetic field splits the (1,1) triplet, and due to spin-orbit induced mixing with the (2,0) singlet, we clearly resolve transport through all triplet states near the avoided singlet-triplet crossings. Transport calculations, based on a simple model with one orbital on each QD, fully replicate the experimental data. Finally, we observe an expected mirrored symmetry between the 1-2 and 2-3 electron transitions resulting from the two-fold spin degeneracy of the orbitals.Comment: 17 pages, 8 figure

    A quantum-dot heat engine operating close to the thermodynamic efficiency limits

    Full text link
    Cyclical heat engines are a paradigm of classical thermodynamics, but are impractical for miniaturization because they rely on moving parts. A more recent concept is particle-exchange (PE) heat engines, which uses energy filtering to control a thermally driven particle flow between two heat reservoirs. As they do not require moving parts and can be realized in solid-state materials, they are suitable for low-power applications and miniaturization. It was predicted that PE engines could reach the same thermodynamically ideal efficiency limits as those accessible to cyclical engines, but this prediction has not been verified experimentally. Here, we demonstrate a PE heat engine based on a quantum dot (QD) embedded into a semiconductor nanowire. We directly measure the engine's steady-state electric power output and combine it with the calculated electronic heat flow to determine the electronic efficiency η\eta. We find that at the maximum power conditions, η\eta is in agreement with the Curzon-Ahlborn efficiency and that the overall maximum η\eta is in excess of 70%\% of the Carnot efficiency while maintaining a finite power output. Our results demonstrate that thermoelectric power conversion can, in principle, be achieved close to the thermodynamic limits, with direct relevance for future hot-carrier photovoltaics, on-chip coolers or energy harvesters for quantum technologies

    Electrical control of spins and giant g-factors in ring-like coupled quantum dots

    Full text link
    Emerging theoretical concepts for quantum technologies have driven a continuous search for structures where a quantum state, such as spin, can be manipulated efficiently. Central to many concepts is the ability to control a system by electric and magnetic fields, relying on strong spin-orbit interaction and a large g-factor. Here, we present a new mechanism for spin and orbital manipulation using small electric and magnetic fields. By hybridizing specific quantum dot states at two points inside InAs nanowires, nearly perfect quantum rings form. Large and highly anisotropic effective g-factors are observed, explained by a strong orbital contribution. Importantly, we find that the orbital and spin-orbital contributions can be efficiently quenched by simply detuning the individual quantum dot levels with an electric field. In this way, we demonstrate not only control of the effective g-factor from 80 to almost 0 for the same charge state, but also electrostatic change of the ground state spin
    • 

    corecore